
Building a Graphical
IDE in Elm/Purescript

for a Distributed PLC Language Compiling to BEAM

by @doppioslash

05/05/2017 - - Barcelona

Hi, I’m

Game
Developer

@doppioslash
www.lambdacat.com

Claudia Doppioslash

Functional
Programmer &

http://www.twitter.com/doppioslash
http://www.lambdacat.com

Peer Stritzinger GmbH

www.stritzinger.com

Functional and Failure Tolerant
Programming for Embedded,

Industrial Control and Automotive

http://www.stritzinger.com

www.grisp.org

luerl

Why are you here?

“I need to get some frontend code done,
and I hate Javascript”

Interested in Haskell-like languages

Undecided between Elm and Purescript

What are you getting
This is a WIP-mortem:

- why we made the choices we made
- what went right/wrong
- enough Elm to understand what’s going on
- our experience of porting from Elm to Purescript

Not an Elm or Purescript guide, also not latest Elm version.

0.16? 0.17?
The jump from 0.16 and 0.17 in Elm

FRP
mailboxes
addresses

signals
foldp

0.16 0.17

“A programmable logic controller, PLC, or programmable
controller is a digital computer used for automation"

Our Project
Visual IDE for PLC language IEC61499

(images from http://www.controldesign.com/articles/2007/202/?show=all)

http://www.controldesign.com/articles/2007/202/?show=all

Our Project

Inspired by Bret Victor’s “Inventing on Principle” talk:

Our Project

PLC Language

Our Project

Compiler

Debug with IDE

BEAM files BEAM running
on bare metal Cowboy

Requirements

Many platforms to support
All PC OSs & iPad Pro

Decent performance
Needs to be interactive
~30fps should be fine

Frontend Tech Choice

Web Technologies because cross-platform

Hence: Javascript, CSS, Svg

Wait a minute, Javascript?

Wait a minute, Javascript?

…let’s not.

Possible Choices, Then

Ready at the time:

Typescript

ElmClojurescript

CoffeScript

Why did we chose Elm?
Functional Reactive Programming

(it’s gone now though)

Good error messages
(so good everyone is imitating them)

Some concepts somewhat similar to Erlang

(e.g. Mailboxes)

What is Elm?
Pure Functional
Strongly Typed

Eagerly evaluated
Compiles to Javascript

Functional Reactive Programming (< 0.17)
Haskell-like syntax

Very small
Optimised for learning curve (>0.16)

Similar to Haskell but no advanced types
Elm package manager enforces semantic versioning

Elm Pros compared to JS

If it compiles, it works (90% of the time)
Confident refactoring

Clean
Much fewer LOC

The famous great error messages
(certainly better than undefined is not a function)

The famous Elm errors
- contextual
- correct common errors

The famous Elm errors
How do they do it?

- make it a priority
- carefully tracked on a git repo
- type system complexity
 (simpler = easier to have good errors)

Elm Pros compared to JS
Elm actually makes sense (seen the ‘Wat’ talk?)

Elm Cons compared to JS

Javascript interop inflexible
(less in 0.17)

new language, still 0.x

…so, not that much.

BROWSER

Our Project Structure

PLC IDE ELMRANG

PLC BOARD

BEAM

bullet.js

PLC Program cowboy + bullet

ports

web sockets

Demo

PLC IDE Structure

Elmrang

Decoder

Renderer

Encoder

browser

plc device

ui interaction

What is StartApp?
Implementation of The Elm Architecture for 0.16

In 0.17 it is the language

Action

Model

ViewUpdate

Beware: this is different in 0.17

Mailbox

Browser
input

Address
Action,

PLC IDE Structure
Four StartApp connected by Mailboxes

Wired into a parent StartApp, so nested StartApps
As in the structure invented by foxdonut

Easy to expand, add components
But no one ported it to 0.17 (may be impossible)

Elmrang can be a component using this structure

Why are we still on 0.16?

We use FRP heavily

Porting code might not be cost effective

Frustrated with lack of communication
(e.g. no deprecation warnings)

Waiting for Elm evolution to stabilise

Production Problems

How to include an Elm project into an Erlang app?

How to organise subcomponents in a big Elm app?

How to store deps not on elm-package?

Organising Subcomponents
Every component has:

component/Action.elm
component/Model.elm
component/View.elm
component/Update.elm
component/Feature.elm

Wired in in App.elm and fed to Main.elm

Mixed Elm/Erlang Project

- /elm subdir in Erlang project
- compile Elm files to /priv
- add the .js to your html file
- we made a rebar3 plugin for this

Non elm-package deps

- fetch it from repo
- store it in a subdir of the erlang project
- move only the elm files to a subdir of the elm project
- not under elm-stuff/
- include the subdir in elm-package.json

Rendering

Choices we had:

- WebGL (2d rendering engine)
- SVG (w or w/o CSS layout and animations)
- Html (not ideal)

Rendering
We use Svg with CSS

CSS styles are in separate CSS files

We have an Svg & CSS expert on call

We try to do as much as we can with CSS

Animation in Elm can get complicated

Rendering

elm-html and elm-svg have great syntax:

Based on virtualdom = fast

div [class “somecssclass”]
 [p [] [text “a very well written paragraph”]
 , p [] [text “and another one”]
]

Several words to the wise
Be aware of what Elm is good for.

An Elm program has to fit the Elm Architecture
(which is good if it does fits, less if it doesn't)

Wrapping Javascript libraries

There is no path to get a library that wraps a
 javascript library on elm-package (e.g. elm-d3)

Several words to the wise

Elm is still experimental

Elm is still subject to big changes, expect to have
to rewrite some of your code with a new version.

Elm lacks a roadmap
There are short beta previews, and

Elm’s author does semi-regular updates of what he’s up to,
in the elm-dev mailing list

(see: https://github.com/elm-lang/projects/blob/master/
roadmap.md)

What next?
We've skipped 0.17 and 0.18

Maybe come back when Elm is nearer to 1.0

Meanwhile taking another language for a spin,
porting a portion of our project to it

Possible Choices, Now
Ready now:

Typescript

ElmClojurescript

CoffeScript

Bucklescript

FableReason

Purescript

: “Please adopt me…”

“…I swear I won’t mention Monads”

Our First Choice

Our Second Choice
Purescript : “you’re free to do anything…

…if you can cope with the types”

What is Purescript?
Pure Functional
Strongly Typed

Eagerly evaluated
Compiles to Javascript

Advanced Types
Haskell-like syntax (with all the squiggles)

Generates readable Javascript, has no runtime
Open community, a bit of a roadmap

Reminds you of anything?

Philosophy Differences

In Purescript you have most of the type
features you have in Haskell, longer learning

curve

Elm is made to be simple above anything
else, have a quick learning curve

Philosophy Differences

In Purescript there are many possible ways of
structuring your app

Elm gives you only one possible program
structure (Elm arch)

Why Purescript after Elm?

The Elm tradeoff
Preferring simpler types begets:

- smooth learning curve
- good error messages

- more boilerplate
- components don’t compose

Why Purescript after Elm?
Exhibit 1: the type system is a great feature of Elm

Purescript’s has more features. (Simplicity vs Power)

Why Purescript after Elm?
- once you get restless with Elm’s boilerplate, you’re likely

ready for more powerful abstractions

- it’s similar enough that porting code is relatively
straightforward

- it's possible to implement Elm in it, but not the other
way around

- it benefits from the hindsight of following Haskell from a
distance

- Small, open community, communication still works

Pros compared to Elm
Pursuit (search libs by type signature)

Clearer direction

Can work a lot with REPL
Great workflow, including Type holes!!

Cons
Takes time to learn the cool abstractions

All (well, many) of the cool abstractions

Reflection on
Elm - Purescript - Haskell

- Simplest
- Focused on UX
- One way to do things
- Removes all historical

baggage
- Great entry level

language
- only targets web

browsers

- Most sensible
- UX is fairly good
- Still a lot of power
- Eagerly

evaluated, hence
simpler

- many backends
(C++, Erlang, Js)

- Research language
- Most powerful
- Least good UX
- Most historical

baggage
- Laziness adds

complexity
- Compiles to native

code, llvm, C, etc

Higher Abstractions in Elixir

Get Started

But Purescript’s community is working on a new
package manager: psc-package

At the moment Purescript is relying on bower,
which makes the time after a new release

particularly annoying

Frameworks Overview

- Pux
- Thermite
- purescript-react

- Halogen
- Flare
- Optic UI

Wrapping Pure

Frameworks

Pux
Optic UI

Type Complexity continuum

ThermiteFlare Halogen

Easy
Here be

free monads
Here be
lenses

Why Flare?
- Great to start with
- Easy to make cool interactive graphs

Why not?

- Limited to a specific use case
- Need to understand applicative functor syntax:
thing <$> thing <*> thing

Why Pux?
Similar to the Elm architecture

Svg support already included

Probably the simplest Purescript framework

Why not?

React dependencies /0\

Interactive React debugger can be wired in

On the pain of installing React

(Though the React interactive debugger is nice)

Pux Structure

Compare with the Elm Architecture (0.16)

Model Action
view

update inputs
Effects

State Action
view

update inputs
Aff

They are so similar, that…

#1
data Action = Increment | Decrement

type State = Int

update :: Action -> State -> State
update Increment state = state + 1
update Decrement state = state - 1

view :: State -> Html Action
view state =
 div []
 [button [onClick (const Increment)]
 [text "Increment"]
 , span [] [text (show state)]
 , button [onClick (const Decrement)]
 [text "Decrement"]
]

#2
type alias Model = Int

type Action = Increment | Decrement

update : Action -> Model -> Model
update action model =
 case action of
 Increment -> model + 1
 Decrement -> model - 1

view : Signal.Address Action -> Model -> Html
view address model =
 div []
 [button [onClick address Decrement] [text "-"]
 , div [countStyle] [text (toString model)]
 , button [onClick address Increment] [text "+"]
]

Which one was Elm?

it was…
#2

Thermite

Lenses and stuff Lenses and stuff

Optic UI
Wraps React Pure Purescript

Why Halogen?
I’d rather not have to install the 300 React tools

It’s used in production by Slamdata, on a pretty
impressive app

> 1 people developing it
Nice Html DSL

Why not?
Argh, the types!! My eyes burn!

aka it’s just a bit hard

v1.0.0 has arrived!

Halogen Structure

State Query Component eval
render

main

Compare with StartApp (0.16)

action
request

Model Action
view

update inputs
Effects

HalogenEffects

Rendering

halogen html has great syntax too:

div [class_ (ClassName “somecssclass”)]
 [p [] [text “a very well written paragraph”]
 , p [] [text “and another one”]
]

Halogen Structure
-- | The state of the component
type State = Boolean

-- | The query algebra for the component
data Query a
 = ToggleState a
 | IsOn (Boolean -> a)

data Message = Toggled Boolean

type Input = Unit

-- | The component definition
myButton :: forall m. H.Component HH.HTML Query Input Message m
myButton =
 H.component
 { initialState: const initialState
 , render
 , eval
 , receiver: const Nothing
 }
 where

State

action
request

Component

Query

Halogen Structure
 initialState :: State
 initialState = false

 render :: State -> H.ComponentHTML Query
 render state =
 let
 label = if state then "On" else "Off"
 in
 HH.button
 [HP.title label
 , HE.onClick (HE.input_ Toggle)
]
 [HH.text label]

render

Halogen Structure

 eval :: Query ~>
 H.ComponentDSL State Query Message m
 eval = case _ of
 Toggle next -> do
 state <- H.get
 let nextState = not state
 H.put nextState
 H.raise $ Toggled nextState
 pure next
 IsOn reply -> do
 state <- H.get
 pure (reply state)

eval

Steps to get started with
Purescript

1. get it from npm or psvm
2. start reading Purescript by Example
3. read purescript-compat-elm
4. try out Pux or Flare
5. come on #purescript on freenode
6. come to the video meetup
7. try out Halogen
8. ???
9. PROFIT!

Purescript Conclusion

Powerful

Sensible

With all your favourite abstractions, and more

It will take time to learn, but similar enough to Elm to get a
headstart

But you don’t have to know everything to start (with Pux)

It’s not obsessed about language UX, but it’s still good

tl;dr

Elm works fine with Erlang

If Elm compiles, it works (mostly)
boilerplate can get repetitive
never expect fancy types
Haskell syntax (with less squiggles)
there is no roadmap
Great entry level language into Haskell
unexpected removal of FRP was :/

Purescript works fine with Erlang
(it even compiles to it)

If Purescript compiles, it works (mostly)
types can get complicated

expect a longish learning curve
Haskell syntax, in all its squiggly glory

the roadmap is a thing
Great second step in your road to Haskell

maybe use Pux to start with

www.stritzinger.com

@doppioslash

http://www.stritzinger.com

www.grisp.org

Win One of 3 Boards by
subscribing to the Newsletter

during the conference
until May 7th

http://www.grisp.org

